Examen session 2: éléments de correction.

Cours - Applications

Cf cours et corrigé session 1.

Exercice 1

Cf cours.

Exercice 2 (E) $(1+t^4)y'(t) = 2ty^2(t) - 4ty(t) + 4t$ où $t \in \mathbb{R}$. C'est une équation de Riccati.

- 1) Clairement, il n'y a pas de solution constante a (a devrait être solution de $2a^2 4a + 4 = 0$). On cherche une solution polynômiale de degré $n \ge 1$: avec $a_n \ne 0$ le coefficient dominant, on observe que: na_nt^{n+3} est le terme dominant de $(1+t^4)y'(t)$ et $2a_nt^{2n+1}$ celui du second membre. Ainsi, on doit nécessairement avoir n+3=2n+1 donc n=2. On cherche ainsi une solution particulière $y(t)=at^2+bt+c$. Pour simplifier, on peut constater que y'(0)=0, ce qui impose b=0 (mais ce n'est pas nécessaire pour identifier a,b,c). En injectant dans (E), on trouve a=1, b=0 et c=1. Conclusion $y_0(t)=t^2+1$ est une solution particulière.
- 2) On suit la méthode résolution des équations de Riccati: on cherche les fonctions z telle que $y(t) = (t^2+1)+z(t)$ est solution de (E). En injectant dans (E) et en tenant compte que $t\mapsto t^2+1$ est solution, cela donne (\tilde{E}) . Si z est solution de (\tilde{E}) alors $y(t)=(t^2+1)+z(t)$ est solution de (E). Réciproquement, si y est solution de (E), alors $z(t)=y(t)-(t^2+1)$ est solution de (\tilde{E}) .
- 3) (\tilde{E}) est une équation de Bernoulli. Donc on considère la fonction u(t)=1/z(t) sur les intervalles où z ne s'annulle pas et z est solution de (\tilde{E}) .

On doit donc résoudre : $(1+t^4)u'(t)+4t^3u(t)=-2t$. L'équation homogène: $(1+t^4)u'(t)+4t^3u(t)=0$ a pour solution $t\mapsto \frac{K}{1+t^4}$. Puis la méthode de variation des constantes donne K'(t)=-2t donc $K(t)=-t^2+k$ (où $k\in\mathbb{R}$) i.e. les solutions générales sont $u(t)=\frac{-t^2+k}{1+t^4}$, où $t\in\mathbb{R}$.

Ainsi, les solutions de (\tilde{E}) sont la fonction nulle et les fonctions $t \mapsto \frac{1+t^4}{k-t^2}$ sur les intervalles inclus dans $\mathbb{R} \setminus \{\pm \sqrt{k}\}$ quand $k \geq 0$ et sur \mathbb{R} quand k < 0.

Finalement, les solutions (maximales) de (E) sont y_0 et les fonctions $t \mapsto \frac{(1+t^4)}{k-t^2} + (1+t^2)$ sur les intervalles (maximaux) inclus dans $\mathbb{R} \setminus \{\pm \sqrt{k}\}$ quand $k \ge 0$ et sur \mathbb{R} quand k < 0.

Exercice 3 (E) $t^2y''(t) - 3ty'(t) + 4y(t) = t^2 \ln(t)$ où $t \in \mathbb{R}^{*+}$.

1) Léquation homogène assosciée est (H) $t^2y''(t) - 3ty'(t) + 4y(t) = t^2\ln(t)$ où $t \in \mathbb{R}^{*+}$

Il s'agit d'une équation d'Euler. On suit l'indication de l'énoncé (cf cours aussi). Si y est une solution on cherche de quelle équation différentielle (\tilde{H}) est solution $z(x) = y(e^x)$ pour $x \in \mathbb{R}$. Réciproquement toute fonction z solution de (\tilde{H}) déterminera une fonction $y(t) = z(\ln(t))$ où t > 0.

toute fonction z solution de (\tilde{H}) déterminera une fonction $y(t)=z(\ln(t))$ où t>0. Pour t>0, on a $y'(t)=\frac{1}{t}z'(\ln(t))$ et $y'(t)=\frac{-1}{t^2}z'(\ln(t))+\frac{1}{t^2}z''(\ln(t))$. Ainsi, l'équation différentielle (\tilde{H}) est

$$z''(x) - 4z'(x) + 4z(x) = 0 \qquad \text{où} \quad x \in \mathbb{R}.$$

Les solutions générales sont $z(x) = (ax + b)e^{2x}$ puisque 2 est racine double de l'équation caractéristique $r^2 - 4r + 4 = 0$.

Cela donne donc les solutions générales de (H): ce sont les fonctions $y(t) = (a \ln(t) + b)t^2$ pour t > 0, avec $a, b \in \mathbb{R}$.

- 2) On suit par exemple la méthode de variation des constantes et on cherche des solutions sous la forme $y(t) = a(t) \cdot \ln(t) \cdot t^2 + b(t) \cdot t^2$. On résout donc le système:
 - $a'(t) \cdot \ln(t) \cdot t^2 + b'(t) \cdot t^2 = 0$
 - $a'(t)[2t.\ln(t) + t] + 2tb'(t) = \ln(t)$

Ce qui donne $a'(t) = \frac{1}{t} \ln(t)$ et $b'(t) = -\frac{1}{t} \ln^2(t)$. Donc $a(t) = \frac{1}{2} \ln^2(t) + \alpha$ et $b(t) = -\frac{1}{3} \ln^3(t) + \beta$ où $\alpha, \beta \in \mathbb{R}$.

On obtient finalement:

$$y(t) = \frac{1}{6}t^2 \ln^3(t) + (\alpha \ln(t) + \beta)t^2.$$

Exercice 4

- 1) Cf cours.
- 2) La fonction f est de classe C^{∞} sur l'ouvert de \mathbb{R}^3 : $\Omega = \{(x,y,z)|\ 1+y-z\neq 0\}$, qui est le complémentaire du fermé $\{(x,y,z)|\ 1=z-y\}$ (c'est un plan). On a f(0,0,0)=0. De plus

$$\frac{\partial f}{\partial z}(0,0,0) = -2 \neq 0$$

Le théorème des fonctions implicites s'applique et il existe un ouvert $U \subset \mathbb{R}^2$, voisinage de (0,0), un ouvert $V \subset \mathbb{R}$, voisinage de 0 et une fonction φ de classe C^{∞} de U dans V telle que

$$\forall (x,y) \in U, \, \forall z \in V, \quad \text{on a} \qquad f(x,y,z) = 0 \Longleftrightarrow z = \varphi(x,y).$$