Licence de Mathématiques 2.

Université d'Artois.

P. Lefèvre

Problème 1

Autour des fonctions convexes.

Soit I un intervalle (dans \mathbb{R}) non vide. On rappelle qu'une fonction $f: I \longrightarrow \mathbb{R}$ est convexe \sin

$$\forall x, y \in I, \ \forall t \in [0, 1], \qquad f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

Exemples.

Soient p > 0 et $\psi_p(x) = x^p$ pour $x \in \mathbb{R}^+$.

- 1) On suppose que ψ_p est convexe. Montrer que nécessairement $p \geq 1$ (Indication: on pourra prendre y = 0 et x = 1).
 - 2) On suppose que $p \ge 1$. Soient x < y dans \mathbb{R}^+ .

On note
$$\Delta(t) = \psi_p(tx + (1-t)y) - t\psi_p(x) - (1-t)\psi_p(y)$$
 où $t \in [0,1]$.

- (i) Calculer $\Delta''(t)$ pour $t \in]0,1[$ et dresser un tableau de variation de ψ_p .
- (ii) En déduire que ψ_p est convexe.

Partie I. Propriétés des fonctions convexes.

Dans toute cette partie, la fonction $f: I \longrightarrow \mathbb{R}$ est convexe.

1) Montrer que pour tout $n \geq 1$, on a

$$\forall x_1, \dots, x_n \in I, \ \forall t_1, \dots, t_n \in [0, 1] \text{ v\'erifiant } t_1 + \dots + t_n = 1, \qquad f\left(\sum_{j=1}^n t_j x_j\right) \leq \sum_{j=1}^n t_j f\left(x_j\right).$$

- 2) Soient $x < y < z \in I$.
 - (i) Montrer que $\frac{f(y) f(x)}{y x} \le \frac{f(z) f(x)}{z x}$.
 - (ii) Montrer que $\frac{f(z) f(x)}{z x} \le \frac{f(z) f(y)}{z y}$.
- (i) Montrer que pour tout x dans l'intérieur de I la dérivée à droite $f'_d(x)$ et la dérivée à gauche $f_g'(x)$ existent et vérifient $f_g'(x) \leq f_d'(x)$.
 - (ii) Que se passe-t-il au bord de I?
 - (iii) Soient $x < y \in I$. Montrer que $f'_d(x) \le f'_g(y)$.
 - 4) Montrer que f est continue sur l'intérieur de I.
 - 5) On appelle \mathcal{N} l'ensemble des points x de I tels que f est non dérivable en x.

On suppose que \mathcal{N} est non vide.

- (i) Montrer que l'on peut définir une application $\theta: \mathcal{N} \to \mathbb{Q}$ avec $\theta(x) \in]f'_{q}(x), f'_{d}(x)[$.
- (ii) Justifier que θ est injective et en déduire que \mathcal{N} est au plus dénombrable.

Partie II. Caractérisations.

Dans cette partie, on considère une fonction $f:I\longrightarrow \mathbb{R}.$

- 1) Montrer que si $\frac{f(y) f(x)}{y x} \le \frac{f(z) f(y)}{z y}$ pour tous $x < y < z \in I$, alors f est convexe.
- 2) Dans cette question, la fonction f est dérivable sur I. Montrer que f est convexe si et seulement si f' est croissante.
- 3) Dans cette question, la fonction f est deux fois dérivable sur I. Montrer que f est convexe si et seulement si $f'' \geq 0$.

Partie III. Applications.

- 1) (i) Retrouver les résultats de la partie Exemples.
 - (ii) Justifier que la fonction exponentielle est convexe.
 - (iii) Justifier que la fonction $-\ln$ est convexe.
- 2) Soient $x_1, \ldots, x_n > 0$ (avec $n \ge 1$). Montrer l'inégalité arithmético-géométrique:

$$\sqrt[n]{x_1 \cdots x_n} \le \frac{1}{n} \sum_{j=1}^n x_j.$$

3) Soient I un intervalle, $~f:[0,1]\longrightarrow I$ continue et $\psi:I\longrightarrow \mathbb{R}$ convexe. Montrer l'inégalité de Jensen:

$$\psi\left(\int_0^1 f(t) dt\right) \le \int_0^1 \psi \circ f(t) dt.$$