Examen d'Analyse Fonctionnelle

 $2^{\grave{e}me}$ session — lundi 5 mars 2007

durée 4 heures

Exercice 1.

Si $w=(w_n)_{n\geqslant 1}$ est une suite de nombres réels strictement positifs, on note $\ell_2(w)$ l'espace

- vectoriel de toutes les suites $(x_n)_{n\geqslant 1}$ de nombres complexes telles que $\sum_{n=1}^{\infty} w_n |x_n|^2 < +\infty$.

 1) Montrer que $(x \mid y)_w = \sum_{n=1}^{\infty} w_n x_n \overline{y}_n$ définit un produit scalaire sur $\ell_2(w)$. On munit $\ell_2(w)$ de la norme associée à ce produit scalaire.
- 2) Montrer que $i_w : x = (x_n)_{n \ge 1} \in \ell_2(w) \mapsto (\sqrt{w_n} x_n)_{n \ge 1} \in \ell_2$ est un isomorphisme isométrique. En déduire que $\ell_2(w)$ est un espace de Hilbert.
- 3) a) Soit E un espace vectoriel normé et A une partie de E. Montrer que A est précompacte si et seulement si pour tout $\varepsilon > 0$ il existe un sous-espace vectoriel F_{ε} de E de dimension finie tel que $d(x, F_{\varepsilon}) \leq \varepsilon$ pour tout $x \in A$.
- b) Montrer que si $w=(w_n)_{n\geqslant 1}$ et $v=(v_n)_{n\geqslant 1}$ sont deux suites de nombres réels strictement positifs telles que $w_n/v_n \xrightarrow[n \to \infty]{} 0$, alors la boule unité fermée de $\ell_2(v)$ est une partie compacte de $\ell_2(w)$.

Exercice 2

On rappelle que l'on note $(f_a)(x) = f(x-a)$, pour $f: \mathbb{R} \to \mathbb{C}$ et $x, a \in \mathbb{R}$. Soit $f \in L^{\infty}(\mathbb{R})$.

- 1) On suppose que f admet un représentant uniformément continu. Montrer que l'application $\tau_f : a \in \mathbb{R} \longmapsto f_a \in L^{\infty}(\mathbb{R})$ est continue.
 - 2) Réciproquement, on suppose que τ_f est continue en 0.
- a) Montrer, en utilisant le Théorème de Fubini, que pour presque tout x de \mathbb{R} , on a $|f(x-t)-f(x)| \leq ||f_t-f||_{\infty}$ pour presque tout $t \in \mathbb{R}$.
- b) Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ la fonction continue positive paire qui est affine sur [-1,0] et sur [0,1] et telle que $\phi(t)=0$ pour $|t|\geqslant 1$, et $\phi(0)=1$; on pose $\phi_n(t)=n\phi(nt)$.

Montrer que $||f - f * \phi_n||_{\infty} \le \int_{\mathbb{R}} ||f_t - f||_{\infty} \phi_n(t) dt$ et en déduire que $\tilde{f}_n = f * \phi_n$ converge vers f dans $L^{\infty}(\mathbb{R})$.

- c) Montrer que f_n est uniformément continue, pour tout $n \ge 1$.
- d) En déduire que f admet un représentant uniformément continu.

Exercice 3

Soit E un espace de Banach et $T \colon E \to E$ un opérateur tel que $0 \notin \overline{T(S_E)}$, où $S_E = \{x \in E \colon ||x|| = 1\}$.

- 1) Montrer qu'il existe c>0 tel que $||Tx||\geqslant c\,||x||$ pour tout $x\in E$, et en déduire que T(E) est fermé dans E.
- 2) En déduire qu'il existe r > 0 tel que $B(0,r) \subseteq T(B_E)$ $(B_E = B(0,1))$ est la boule unité de E).
- 3) Montrer qu'il existe C > 0 tel que $T(B_E) \subseteq CB_{T(E)}$, où $B_{T(E)}$ est la boule unité de T(E).
- 4) En déduire que si T est compact, alors il est de rang fini (c'est-à-dire que dim $T(E) < +\infty$).

Exercice 4

- 1) Soit $(c_n)_{n\geqslant 1}$ une suite bornée de nombres complexes, et $T\colon \ell_2\to \ell_2$ l'opérateur défini par $T(x)=(c_nx_n)_{n\geqslant 1}$, pour tout $x=(x_n)_{n\geqslant 1}\in \ell_2$.
 - a) Montrer que chaque c_n , $n \ge 1$, est une valeur propre de T.
 - b) Montrer que si $\lambda \notin \{c_n; n \ge 1\}$, alors $\lambda \notin \sigma(T)$.
 - c) En déduire le spectre $\sigma(T)$ de T.
- 2) Soit K une partie compacte non vide arbitraire de \mathbb{C} . Montrer qu'il existe un opérateur $T \in \mathcal{L}(\ell_2)$ tel que $\sigma(T) = K$.
