Licence de Mathématiques. Université d'Artois. 2008-2009. Session 2.

INTÉGRATION

Éléments de correction

Exercice 1.

1-2-3-4) il suffit d'adapter le corrigé de la session 1. On trouve $I_r = 0$.

5) La fonction $t \mapsto \ln \left| 1 - e^{it} \right|$ est continue sur $[-\pi, \pi] \setminus \{0\}$.

Ainsi les intégrales $\int_{-\pi}^{-a} \ln \left| 1 - e^{it} \right| dt$ et $\int_{a}^{\pi} \ln \left| 1 - e^{it} \right| dt$ sont définies pour tout $a \in]0, \pi[$.

Enfin au voisinage de 0: $\ln \left| 1 - e^{it} \right| = \ln |2\sin(t/2)| \sim \ln |t|$. Or $t \mapsto \ln |t|$ est intégrable sur $[0, \pi]$ et sur $[-\pi, 0]$.

On utilise le théorème de continuité pour montrer que $r\mapsto I_r$ est continue sur [0,1]. En particulier, $I=I_1=0$.

Bien sûr, pour calculer I, on peut faire autrement: par exemple une variante en utilisant le T.C.D. ou bien (mais ce n'était pas la question posée!) utiliser les techniques des questions 1-3.

Exercice 2. 1) \mathcal{W} est un ouvert donc un borélien. Cette partie est incluse dans le disque unité qui est de mesure finie donc \mathcal{W} est de mesure finie. On effectue un changement de variable en polaire.

On obtient: $\lambda_2(\mathcal{W}) = \int_D r \ dr d\theta$ où $D = \{(r, \theta) \in \mathbb{R}^{+*} \times]\alpha - h\pi, \alpha + h\pi[\mid 1 - h < r < 1 \}.$ Ainsi

$$\lambda_2(W) = \int_{\alpha - h\pi}^{\alpha + h\pi} \left[\frac{1}{2} r^2 \right]_{1-h}^1 d\theta = \pi h^2 (2 - h).$$

2) Pas de problème de mesurablilité : la fonction est continue. De plus, elle est positive. On peut effectuer le changement de variable: il s'agit d'un C^1 difféomorphisme φ de D sur $\Delta =]1,2[\times]1,2[$. De plus le jacobien de φ^{-1} vaut $-\frac{1}{3u}$. Ainsi

$$\int_{D} f \ d\lambda_{2} = \int_{\Delta} uv^{2} . |Jac(\varphi^{-1})| \ d\lambda_{2} = \int_{\Delta} uv^{2} \cdot \frac{1}{3u} \ d\lambda_{2} = \frac{1}{3} \int_{\Delta} v^{2} \ d\lambda_{2} = \frac{7}{9} .$$

Exercice 3.

1) f_n est continue sur $\mathbb{R}^+ \setminus \{1\}$. Au voisinage de 1, (avec $x \neq 1$) on a $f_n(x) \sim \frac{\mathrm{e}^{-1}}{\sqrt{|1-x^2|}}$. Or $\frac{\mathrm{e}^{-1}}{\sqrt{1-x^2}}$ est intégrable sur]0,1[: on peut invoquer le critère de Riemann au voisinage de

1 car $(f_n(x) \sim \frac{\mathrm{e}^{-1}}{\sqrt{2}(1-x)^{1/2}}$ (et 1/2 < 1) ou tout simplement remarquer qu'une primitive de $\frac{1}{\sqrt{1-x^2}}$ est $\arcsin(x)$ qui admet (par continuité) une limite en 1. Le raisonnement s'adapte (attention au signe!) à droite du point 1: $f_n(x) \sim \frac{\mathrm{e}^{-1}}{\sqrt{2}(x-1)^{1/2}}$.

Ainsi $\int_{0}^{1} f_n(x) dx$ et $\int_{1}^{A} f_n(x) dx$ convergent (pour tout A > 1). Donc $\int_{0}^{A} f_n(x) dx$ bien définie (pour tout A > 1).

Reste à justifier que $\int_{A}^{+\infty} f_n(x) dx$ est bien définie. Or au voisinage de l'infini, f_n est

positive (sur \mathbb{R}^+ tout entier d'ailleurs) et $f_n(x) \sim \frac{\mathrm{e}^{-x^n}}{x} \leq \mathrm{e}^{-x}$ qui est intégrable. D'où le résultat. De plus on pout e^{x}

D'où le résultat. De plus, on peut affirmer, puisque les intégrales génralisées convergent, que f_n est bien Lebesgue intégrable sur \mathbb{R}^+ .

2) Posons $g(x) = \frac{1}{\sqrt{|1-x^2|}}$ pour $x \in [0,1[$ et $g(x) = f_1(x) = \frac{\mathrm{e}^{-x}}{\sqrt{|1-x^2|}}$ si $x \in]1,+\infty[$. Enfin g(1) = 0 par exemple (c'est sans importance). D'après le 1., g est intégrable sur \mathbb{R}^+ . De plus, pour tout $n \geq 1$, on a $|f_n(x)| = f_n(x) \leq g(x)$ presque partout (en fait partout!) Enfin pour tout $x \in \mathbb{R}^+$, on a $f_n(x) \to 0$ si x > 1 (car $x^n \to +\infty$ donc $\mathrm{e}^{-x^n} \to 0$) et $f_n(x) \to \frac{1}{\sqrt{|1-x^2|}}$ si x < 1 (car $x^n \to 0$).

D'après le théorème de convergence dominée de Lebesgue, I_n converge donc vers

$$\int_{0}^{1} \frac{1}{\sqrt{|1-x^{2}|}} dx = \left[\arcsin(x)\right]_{0}^{1} = \frac{\pi}{2}.$$

Exercice 4.

- 1) cours: cette intégrale vaut 0.
- 2)a) Si $x \in B$ pour tout $n \ge 1$, $x \in B_n$ (par décroissance de (B_n)) donc $f_n(x) = f(x)$. Si $x \notin B$ alors il existe n_0 tel que pour tout $n \ge n_0$: $x \notin B_n$, donc $f_n(x) = 0 = f(x)$.
- b) C'est le théorème de convergence dominée de Lebesgue: on a déjà la convergence simple partout et la domination est claire: $|f_n| \leq |f|$, qui est intégrable.
- 3)a) $B_n = \{|f| \ge n\} = \{\omega \in \Omega | |f(\omega)| \ge n\}$ est décroissante. $B = \bigcap_{n \ge 1} B_n = \{|f| = \infty\}$ qui est négligeable (cf cours) donc ceci résulte de 1.
- b) Sinon, il existe $\varepsilon_0 > 0$ et une suite B_n telle que $\mu(B_n) \leq 2^{-n}$ et $\int_{B_n} |f| d\mu \geq \varepsilon_0$. On peut supposer que (B_n) est décroissante (cf session 1). On en déduit, avec $B = \bigcap_{n \geq 1} B_n$, que $\mu(B) = 0$ et (cf 3b) $\int_{B} |f| d\mu \geq \varepsilon_0 > 0$ ce qui est faux (cf 1.).