Capes de Mathématiques. Université d'Artois P. Lefèvre.

Problème en classe.

Théorème de Bernstein.

Il s'agit de donner une preuve, due à Bernstein, du Théorème de Weierstraß: toute fonction continue sur un segment est limite uniforme d'une suite de polynômes.

Dans tout le problème, on considère des espaces de probabilité (Ω, \mathbb{P}) finis¹. Comme d'habitude, on notera $\mathbb{P}(\{X \in F\})$ au lieu de $\mathbb{P}(\{\omega \in \Omega | X(\omega) \in F\})$ (X étant une variable aléatoire et $F \subset \mathbb{R}$).

Dans toute la suite du problème, on fixe une fonction continue h sur [0,1] et $\varepsilon > 0$.

I] 1) Soit Z une variable aléatoire sur (Ω, \mathbb{P}) , admettant une variance var(Z). Montrer que pour tout $\alpha > 0$, on a:

$$\mathbb{P}(\{|Z - \mathbb{E}(Z)| \ge \alpha\}) \le \frac{var(Z)}{\alpha^2}.$$

2) Soient Z_1, \ldots, Z_n des variables aléatoires (deux à deux) indépendantes. Montrer que

$$var\left(\sum_{i=1}^{n} Z_i\right) = \sum_{i=1}^{n} var(Z_i).$$

II] On fixe $p \in [0, 1]$. Soient X_1, \ldots, X_n des variables aléatoires (mutuellement) indépendantes, chacune à valeurs dans $\{0, 1\}$, de même loi: pour tout $1 \le i \le n$,

$$\mathbb{P}_{X_i}(\{1\}) = \mathbb{P}(\{X_i = 1\}) = p$$
 et $\mathbb{P}_{X_i}(\{0\}) = \mathbb{P}(\{X_i = 0\}) = 1 - p$

On considère $S_n = X_1 + \dots + X_n$ et on pose $Y_n = \frac{S_n}{n}$.

- 1) S_n suit une loi usuelle: laquelle?
- **2)** a) Quelle est la loi de Y_n ?
- **b)** Calculer $\mathbb{E}(X_n)$ et en déduire $\mathbb{E}(Y_n)$.

¹Ainsi on ne souciera pas de la tribu, qui sera tout simplement l'ensemble de toutes les parties de Ω , comme d'habitude.

- c) Calculer $var(X_n)$ et en déduire $var(Y_n)$.
- 3) a) Quelles sont les valeurs prises par $h(Y_n)$?
- **b)** Dans le cas où h est injective, quelle est la loi de $h(Y_n)$? Traiter ensuite le cas de h quelconque.
 - **4)** Donner une expression de $\mathbb{E}(h(Y_n))$.
 - III] 1) Justifier qu'il existe $\delta > 0$ tel que pour tout $x, y \in [0, 1]$:

$$|x - y| < \delta \Longrightarrow |h(x) - h(y)| \le \varepsilon.$$

Dans la suite de cette partie, on note $I = \{\omega \in \Omega | |Y_n(\omega) - p| < \delta\}$ et \mathbb{I}_I la fonction indicatrice de I.

- **2)a)** Montrer $\mathbb{E}\Big(|h(Y_n) h(p)|.\mathbb{1}_I\Big) \le \varepsilon$.
- **b)** En déduire qu'il existe $M \geq 0$ tel que $\mathbb{E}|h(Y_n) h(p)| \leq M.\mathbb{P}(\Omega \setminus I) + \varepsilon$.
- c) En déduire $\left| \mathbb{E} \left(h(Y_n) h(p) \right) \right| \leq \frac{M}{n\delta^2} + \varepsilon$.
- **IV**] 1) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$, on a pour tout $p \in [0, 1]$:

$$\left| h(p) - \sum_{k=0}^{n} {n \choose k} h\left(\frac{k}{n}\right) p^k (1-p)^{n-k} \right| \le 2\varepsilon.$$

- 2) Conclure dans le cas où le segment est [0, 1].
- 3) Conclure dans le cas d'un segment quelconque.